Main content area

A study of surface subsidence and coal pillar safety for strip mining in a deep mine

Sun, Wei, Zhang, Qi, Luan, Yuanzhong, Zhang, Xiao-Ping
Environmental earth sciences 2018 v.77 no.17 pp. 627
buildings, coal, deformation, mathematical models, subsidence, surface mining, villages
Some villages and bridges are located on the ground surface of the working district no. 7 in the Wanglou Coal Mine. If longwall mining is adopted, the maximum deformation of the ground surface will exceed the safety value. Strip mining is employed for the working district no. 7 which is widely used to reduce surface subsidence and the consequent damage of buildings on the ground surface. To ensure the safety of coal pillars and improve the recovery coefficient, theoretical analysis and numerical simulation (FLAC 3D) were adopted to determine the coal pillar and mining widths and to discuss the coal pillar stress distribution and surface subsidence for different mining scenarios. The results revealed that the width of coal pillars should be larger than 162 m, and the optimized mining width varies from 150 to 260 m. As the coal seam is exploited, vertical stress is mainly applied on the coal pillar, inducing stress changes on its ribs. The coefficient of mining-induced stress varies from 2.02 to 2.62 for different mining scenarios. The maximum surface subsidence and horizontal movement increase as the mining width increases. However, when the mining width increases to a certain value, increasing the pillar width cannot significantly decrease the maximum subsidence. To ensure the surface subsidence less than 500 mm, the mining width should not be larger than 200 m. Considering the recovery coefficient and safety of the coal pillar, a pillar width of 165 m is suggested.