PubAg

Main content area

GIS-based gully erosion susceptibility mapping: a comparison among three data-driven models and AHP knowledge-based technique

Author:
Arabameri, Alireza, Rezaei, Khalil, Pourghasemi, Hamid Reza, Lee, Saro, Yamani, Mojtaba
Source:
Environmental earth sciences 2018 v.77 no.17 pp. 628
ISSN:
1866-6280
Subject:
Internet, drainage, entropy, geographic information systems, gully erosion, land cover, land degradation, land use, models, normalized difference vegetation index, prediction, rivers, soil, soil conservation, streams, surveys, topography, watersheds, Iran
Abstract:
Toroud Watershed in Semnan Province, Iran is a prone area to gully erosion that causes to soil loss and land degradation. To consider the gully erosion, a comprehensive map of gully erosion susceptibility is required as useful tool for decreasing losses of soil. The purpose of this research is to generate a reliable gully erosion susceptibility map (GESM) using GIS-based models including frequency ratio (FR), weights-of-evidence (WofE), index of entropy (IOE), and their comparison to an expert knowledge-based technique, namely, Analytic Hierarchy Process (AHP). At first, 80 gully locations were identified by extensive field surveys and Google Earth images. Then, 56 (70%) gully locations were randomly selected for modeling process, and the remaining 26 (30%) gully locations were used for validation of four models. For considering geo-environmental factors, VIF and tolerance indices are used and among 18 factors, 13 factors including elevation, slope degree, slope aspect, plan curvature, distance from river, drainage density, distance from road, lithology, land use/land cover, topography wetness index (TWI), stream power index (SPI), normalized difference vegetation index (NDVI), and slope–length (LS) were selected for modeling aims. After preparing GESMs through the mentioned models, final maps divided into five classes including very low, low, moderate, high, and very high susceptibility. The receiver operating characteristic (ROC) curve and the seed cell area index (SCAI) as two validation techniques applied for assessment of the built models. The results showed that the AUC (area under the curve) in training data are 0.973 (97.3%), 0.912 (91.2%), 0.939 (93.9%), and 0.926 (92.6%) for AHP, FR, IOE, and WofE models, respectively. In contrast, the prediction rates (validating data) were 0.954 (95.4%), 0.917 (91.7), 0.925 (92.5%), and 0.921 (92.1%) for above models, respectively. Results of AUC indicated that four model have excellent accuracy in prediction of prone areas to gully erosion. In addition, the SCAI values showed that the produced maps are generally reasonable, because the high and very high susceptibility classes had very low SCAI values. The results of this research can be used in soil conservation plans in the study area.
Agid:
6130284