Main content area

Assessing regulating ecosystem services provided by the Ege University Rectorship Garden

Coskun Hepcan, Cigdem, Hepcan, Serif
Urban forestry & urban greening 2018 v.34 pp. 10-16
allometry, carbon sequestration, cities, ecosystem services, equations, home gardens, landscapes, parks, quality of life, stormwater, trees, underground parts, urban areas, urban forests
Urban ecosystem services are generated in a diverse set of natural and managed urban green areas, including parks, urban forests, cemeteries, vegetated corridors, vacant lots, gardens, yards, and campus areas. Private gardens are generally undervalued for the ecosystem services they provide along with the other urban green areas.This paper aims to calculate three regulating ecosystem services; runoff retention, carbon storage and sequestration generated by the Ege University Rectorship Garden, which is one of the few former Levantine gardens remaining in the highly urbanized Bornova district in İzmir. The carbon storage and sequestration capacity of the trees in the area was calculated based on allometric equations. Runoff retention was computed by using the SCS-CN method. Findings show that pervious surfaces cover approximately two-thirds of the garden with 1203 trees. The estimated carbon storage of both the above and below-ground parts of the trees in the garden is 648.25 t. The total annual carbon sequestration rate is estimated to be 7.87 t year−1 (0.10 kg m−2). The potential storm water runoff value was predicted to be approximately 7,018.9 m3. This indicates that the garden has a high value of runoff retention and substantial capacity carbon storage and sequestration.It can be concluded that private gardens and associated ecosystem services in urban landscapes can play an important role in enhancing the quality of life in cities. Therefore, an integral approach is needed where all types of green areas are planned and managed in a systematic way, so that they can provide maximum services.