Main content area

Egg ejection cost can limit defence strategies against brood parasitism

Biagolini‐Jr, Carlos, dos Santos, Paulo Victor Resende
Ethology 2018 v.124 no.10 pp. 719-723
birds, brood parasitism, egg shell, eggs, evolution, field experimentation, hosts, nests, parasites, predation, risk factors, smell
A cost associated with the evolution of antiparasite strategies is the failure to recognize parasitic eggs, leading the host to evict its own eggs. However, there is evidence that birds recognize their own eggs through imprinting. This leads to the question of why birds accept parasitic eggs if such eggs can be identified. Here, we tested whether egg ejection per se can be costly due to increased predation risk to the remaining clutch and whether olfactory or visual cues of egg ejection increase predation. We carried out three field experiments to answer the following questions: (a) Does ejecting an egg increase nest predation risk? (b) Does the presence of olfactory cues, such as the smell of a broken egg, increase nest predation risk? And (c) Does the presence of visual cues, such as an egg shell below the nest, increase nest predation risk? We found evidence that egg ejection increases nest predation and that olfactory cues alone also increase nest predation. The presence of visual cues did not change predation rates. These data indicate that egg ejection is costly for both host and parasitic eggs that may remain in the nest. Our results suggest why host and parasite eggs are commonly found within the same nests, despite the possibility that hosts recognize and could possibly eject the parasite’s egg.