Main content area

Structural response of black locust (Robinia pseudoacacia L.) and small-leaved lime (Tilia cordata Mill.) to varying urban environments analyzed by terrestrial laser scanning: Implications for ecological functions and services

Bayer, Dominik, Reischl, Astrid, Rötzer, Thomas, Pretzsch, Hans
Urban forestry & urban greening 2018 v.35 pp. 129-138
Robinia pseudoacacia, Tilia cordata, asymmetry, branches, ecological function, ecosystem services, parks, quantitative analysis, surface roughness, trees, urban areas, Germany
Quantitative measurements of structure and morphology of urban trees are hardly exhausted so far, especially in regard to variations caused by altering urban environments. However, structure and functions of trees are heavily interwoven. In fact, knowledge about structural attributes is essential for a better understanding of urban ecosystem functions and services. In order to scrutinize spatially explicit and detailed structural attributes under varying urban environments, we acquired terrestrial laser scans and applied the according methodological approaches to the common urban tree species black locust (Robinia pseudoacacia L.) and small-leaved lime (Tilia cordata Mill.). We analyzed 52 small-leaved limes and 41 black locust trees within the city of Munich (Germany). Species as well as growing location had a significant effect on the height-diameter relation. We also found greater crown volumes for small-leaved lime. Black locust however, displayed more crown projection area and likely more shade efficient crown shapes at similar volumes. Stem inclination of black locust was found to be higher in parks than in street canyons with town squares lying in between. Furthermore, black locust displayed strong crown asymmetry in park areas, likely caused by competition with neighbors. The angles of main branches did not differ significantly between both species nor between the growing location. Branch angles, branch bending, the length of the branches as well as species and growing location had a significant effect on vertical crown center position, i.e. general crown shape. Surface complexity of lime is lower than of black locust, with its lowest manifestation in parks. Fractal-like crown surface structures, increasing surface roughness and complexity, were found to be more pronounced for black locust than for small-leaved lime. Thereby, black locust featured the highest crown surface complexity in parks, the lowest in street canyons. The results suggest that studies on spatially explicit tree structures may contribute to more target oriented tree plantings and thus, more effective exploitation of ecosystem services and benefits.