Main content area

Optimization of Multi-Reservoir Operating Rules for a Water Supply System

Wang, Qiang, Ding, Wei, Wang, Yan
Water resources management 2018 v.32 no.14 pp. 4543-4559
guidelines, water supply, China
To obtain the optimal releases of the multi-reservoir system, two sets of joint operating rules (JOR-I and JOR-II) are presented based on the aggregation-disaggregation approach and multi-reservoir approach respectively. In JOR-I, all reservoirs are aggregated to an equivalent reservoir, the operating rules of which, the release rule of the system is optimized following operating rule curves coupled with hedging rules. Then the system release is disaggregated into each reservoir according to water supply priorities and the dynamic demand partition approach. In JOR-II, a two-stage demand partition approach is applied to allocate the different demand priorities to determine the release from each reservoir. To assess the reliability and effectiveness of the joint operating rules, the proposed rules are applied to a multi-reservoir system in Liaoning province of China. Results demonstrate that JOR-I is suitable for high-dimensional multi-reservoir operation problems with large-scale inflow data, while JOR-II is suitable for low-dimensional multi-reservoir operation problems with small-scale inflow data, and JOR-II performs better than JOR-I but requires more computation time. The research provides guidelines for the management of multi-reservoir system.