Main content area

Impact of plasmid interactions with the chromosome and other plasmids on the spread of antibiotic resistance

Gama, João Alves, Zilhão, Rita, Dionisio, Francisco
Plasmid 2018 v.99 pp. 82-88
antibiotic resistance, antibiotic resistance genes, chromosomes, hosts, plasmids, virulence
Naturally occurring plasmids have medical importance given that they frequently code for virulence or antibiotic resistance. In many cases, plasmids impose a fitness cost to their hosts, meaning that the growth rate of plasmid-bearing cells is lower than that of plasmid-free cells. However, this does not fit with the fact that plasmids are ubiquitous in nature nor that plasmids and their hosts adapt to each other very fast – as has been shown in laboratory evolutionary assays. Even when plasmids are costly, they seem to largely interact in such a way that the cost of two plasmids is lower than the cost of one of them alone. Moreover, it has been argued that transfer rates are too low to compensate for plasmid costs and segregation. Several mechanisms involving interactions between plasmids and other replicons could overcome this limitation, hence contributing to the maintenance of plasmids in bacterial populations. We examine the importance of these mechanisms from a clinical point of view, particularly the spread of antibiotic resistance genes.