Main content area

Is Sulfate Radical Really Generated from Peroxydisulfate Activated by Iron(II) for Environmental Decontamination?

Wang, Zhen, Jiang, Jin, Pang, Suyan, Zhou, Yang, Guan, Chaoting, Gao, Yuan, Li, Juan, Yang, Yi, Qiu, Wei, Jiang, Chengchun
Environmental science & technology 2018 v.52 no.19 pp. 11276-11284
alcohols, biphenyl, decontamination, hydrogen peroxide, hydroxyl radicals, iron, kinetics, models, oxidation, pH, pollution, sulfates
It is well documented that the traditional Fenton reagent (i.e., the combination of Fe(II) and H₂O₂) produces hydroxyl radical (•OH) under acidic conditions, while at near-neutral pH the reactive intermediate converts to ferryl ion (Fe(IV)) that can oxidize sulfoxides to produce corresponding sulfones, markedly differing from their •OH-induced products. However, it remains unclear whether Fe(IV) is generated in the Fe(II) activated peroxydisulfate (PDS) process, where sulfate radical (SO₄•–) is long recognized as the dominant intermediate in literature. Here we demonstrated that SO₄•– oxidized methyl phenyl sulfoxide (PMSO, a model sulfoxide) to produce biphenyl compounds rather than methyl phenyl sulfone (PMSO₂). Interestingly, the formation of PMSO₂ was observed when PMSO was treated by the Fe(II)/PDS system over a wide pH range, and the yields of PMSO₂ were quantified to be ∼100% at acidic pH 3–5. The identification of Fe(IV) in the Fe(II)/PDS system could also reasonably explain the literature results on alcohol scavenging effect and ESR spectra analysis. Further, a Fe(IV)-based kinetic model was shown to accurately simulate the experimental data. This work urges re-evaluation of the Fe(II)/PDS system for environmental decontamination, given that Fe(IV) would have different reactivity toward environmental contaminants compared with SO₄•– and/or •OH.