Main content area

Tumor-Specific Diagnostic Marker for Transmissible Facial Tumors of Tasmanian Devils : Immunohistochemistry Studies

Tovar, C., Obendorf, D., Murchison, E. P., Papenfuss, A. T., Kreiss, A., Woods, G. M.
Sarcophilus harrisii, Schwann cells, animal pathology, animals, carcinogenesis, cell lines, cytogenetics, genes, genetic analysis, histopathology, immunohistochemistry, metastasis, models, myelin basic protein, neoplasms, nerve growth factor, neural crest, neurons, phosphopyruvate hydratase, tissues
Devil facial tumor disease (DFTD) is a transmissible neoplasm that is threatening the survival of the Tasmanian devil. Genetic analyses have indicated that the disease is a peripheral nerve sheath neoplasm of Schwann cell origin. DFTD cells express genes characteristic of myelinating Schwann cells, and periaxin, a Schwann cell protein, has been proposed as a marker for the disease. Diagnosis of DFTD is currently based on histopathology, cytogenetics, and clinical appearance of the disease in affected animals. As devils are susceptible to a variety of neoplastic processes, a specific diagnostic test is required to differentiate DFTD from cancers of similar morphological appearance. This study presents a thorough examination of the expression of a set of Schwann cell and other neural crest markers in DFTD tumors and normal devil tissues. Samples from 20 primary DFTD tumors and 10 DFTD metastases were evaluated by immunohistochemistry for the expression of periaxin, S100 protein, peripheral myelin protein 22, nerve growth factor receptor, nestin, neuron specific enolase, chromogranin A, and myelin basic protein. Of these, periaxin was confirmed as the most sensitive and specific marker, labeling the majority of DFTD cells in 100% of primary DFTD tumors and DFTD metastases. In normal tissues, periaxin showed specificity for Schwann cells in peripheral nerve bundles. This marker was then evaluated in cultured devil Schwann cells, DFTD cell lines, and xenografted DFTD tumors. Periaxin expression was maintained in all these models, validating its utility as a diagnostic marker for the disease.