Main content area

A fully caninised anti-NGF monoclonal antibody for pain relief in dogs

Gearing, David P, Virtue, Elena R, Gearing, Robert P, Drew, Alexander C
BMC veterinary research 2013 v.9 no.1 pp. 795
algorithms, analgesia, complement, dogs, half life, humans, immune response, immunoglobulin G, kaolin, lameness, manufacturing, medicine, models, monoclonal antibodies, pain, rats
Monoclonal antibodies are a major class of biological therapies in human medicine but have not yet been successfully applied to veterinary species. We have developed a novel approach, PETisation, to rapidly convert antibodies for use in veterinary species. As an example, anti-nerve growth factor (anti-NGF) monoclonal antibodies (mAbs) which are effective in reducing acute and chronic pain in rodents and man are potentially useful for treating pain in dogs but a fully caninised mAb is required in order to avoid an immune response. The aim of this study was to determine the optimal properties of a caninised anti-NGF mAb for safe, repeated administration to dogs, to determine its pharmacokinetic properties and to evaluate its efficacy in a model of inflammatory pain in vivo. Starting with a rat anti-NGF mAb, we used a novel algorithm based on expressed canine immunoglobulin sequences to design and characterise recombinant caninised anti-NGF mAbs. Construction with only 2 of the 4 canine IgG heavy chain isotypes (A and D) resulted in stable antibodies which bound and inhibited NGF with high-affinity and potency but did not bind complement C1q or the high-affinity Fc receptor gamma R1 (CD64). One of the mAbs (NV-01) was selected for scale-up manufacture, purification and pre-clinical evaluation. When administered to dogs, NV-01 was well tolerated, had a long serum half-life of 9 days, was not overtly immunogenic following repeated dosing in the dog and reduced signs of lameness in a kaolin model of inflammatory pain. The combination of stability, high affinity and potency, no effector activity and long half-life, combined with safety and activity in the model of inflammatory pain in vivo suggests that further development of the caninised anti-NGF mAb NV-01 as a therapeutic agent for the treatment of chronic pain in dogs is warranted.