PubAg

Main content area

Glacial influence and stream macroinvertebrate biodiversity under climate change: Lessons from the Southern Alps

Author:
Lencioni, Valeria
Source:
The Science of the total environment 2018 v.622-623 pp. 563-575
ISSN:
0048-9697
Subject:
Baetidae, Limoniidae, Nemouridae, Oligochaeta, aquatic invertebrates, biodiversity, climate change, community structure, correspondence analysis, environmental factors, glaciers, habitats, indicator species, lakes, streams, temporal variation, water temperature, watersheds
Abstract:
The aim of this work was to highlight the main ecological predictors driving invertebrate distribution in eight glacier-fed streams in the Southern Alps. Thirty-five sites belonging to four stream types were sampled monthly during the ablation season of one, two or three years between 1996 and 2014. Taxa from glacial (kryal and glacio-rhithral) and non-glacial (kreno-rhithral and lake outlet) sites were separated by canonical correspondence analysis (CCA) along a glacial influence gradient and a hydrological-altitudinal gradient. High glacial influence was associated mainly with low maximum water temperature (Tmax), high Glacial Index (calculated as a function of glacier area and distance from the glacier), and the abundance of Diamesa species (D. steinboecki, D. goetghebueri, D. zernyi, and D. latitarsis). Change-point analysis and Threshold Indicator Taxa Analysis confirmed the CCA results in identifying these Diamesa species as the taxa with the strongest preference for high percent glacier cover in the catchment (change point~30%) and low Tmax (change point~6°C). Temporal changes in community structure were highlighted in seven sites fed by glaciers under different retreat rates. Where the rate was faster and the remaining glacier smaller (≪1km2), the most cold-stenothermal kryal inhabitant, D. steinboecki, almost disappeared or survived only as brachypterous populations, whereas other Diamesinae (Pseudokiefferiella parva), Orthocladiinae (e.g. Eukiefferiella, Orthocladius), Limoniidae, Baetidae, Nemouridae, and non-insect taxa (e.g. Oligochaeta, Hydracarina) became more abundant. Upstream migration was observed in Diamesa spp. which conquered new stream reaches left free by the retreating glacier, and euriecious taxa which colonized reaches with ameliorated environmental conditions, no longer the exclusive habitat of Diamesa spp. Co-occurrence of stochastic and deterministic assembly processes seem to drive spatio-temporal changes in these invertebrate communities. Long-term ecological studies on the adaptive biology of kryal species will be useful to predict the fate of Alpine biodiversity.
Agid:
6154147