Main content area

Concentration and spectroscopic characteristics of DOM in surface runoff and fracture flow in a cropland plot of a loamy soil

Xian, Qingsong, Li, Penghui, Liu, Chen, Cui, Junfang, Guan, Zhuo, Tang, Xiangyu
The Science of the total environment 2018 v.622-623 pp. 385-393
basins, cropland, dissolved organic carbon, fluorescence, land use, loam soils, prediction, rain, runoff, soil water, soil water potential, spectral analysis, spectroscopy, tensiometers, watersheds, China
Being crucial for predicting the impact of source inputs on a watershed in rainfall events, an understanding of the dynamics and characteristics of dissolved organic matter (DOM) export from the soil under particular land use types, particularly those associated with underground flows is still largely lacking. A field study was carried out using a 1500m2 slope farmland plot in the hilly area of Sichuan Basin, Southwest China. The discharge of surface runoff and fracture flow was recorded and samples were collected in four representative rainfall events. For DOM characterization, concentration of dissolved organic carbon (DOC) and absorbance/excitation-emission matrix (EEM) fluorescence were analyzed. Soil water potential was also determined using tensiometers for understanding the runoff generation mechanisms. The DOC values for both surface and fracture flow showed significant responses to rainfall, with hydrological path being the primary factor in determining DOM dynamics. EEM-PARAFAC analyses indicated that the soil DOM mainly consisted of two terrestrial humic-like components with peaks located at Ex/Em 270(380)/480nm (C1) and 250(320)/410nm (C2), respectively. Concentrations of these components also responded strongly to rainfall, fluctuating in good agreement with the corresponding DOCs. Although there was no change in the presence of the components themselves, their relative distributions varied during precipitation, with the C1/C2 ratio increasing with the proportion of soil pre-event water. As the dynamic changes of soil DOM characteristics can be successfully captured using spectroscopic techniques, they may serve as a tracer for understanding hydrological paths based on their potential correlations with water source differences during rains.