Main content area

Cytotoxicity of two water-soluble polysaccharides from Codonopsis pilosula Nannf. var. modesta (Nannf.) L.T.Shen against human hepatocellular carcinoma HepG2 cells and its mechanism

Bai, Ruibin, Li, Wuyan, Li, Yingdong, Ma, Ming, Wang, Yanping, Zhang, Jing, Hu, Fangdi
International journal of biological macromolecules 2018 v.120 pp. 1544-1550
Codonopsis pilosula, alcohols, antineoplastic activity, apoptosis, carcinoma, caspase-3, cellulose, chemical analysis, chemical structure, cytotoxicity, hepatoma, human cell lines, humans, molecular weight, toxicity testing, uronic acids, uterine cervical neoplasms, water solubility
Two water-soluble polysaccharides named CPP1a and CPP1c were isolated from C. pilosula Nannf. var. modesta L.T.Shen by hot-water extraction and purified by graded alcohol precipitation and DEAE-52 cellulose column. The structure of CPP1c with higher yield has been characterized while its antitumor activities has not been elucidated. In this study, we firstly analyzed the chemical structure of CPP1a. The results of instrumental analysis combined with chemical analysis showed that CPP1a was composed of →1)- β‑l‑Rhap‑(4→, →1)- β‑Arap‑(5→, →1)- β‑d‑GalpA‑(4→, →1)- β‑d‑Galp‑(6→, terminal‑β‑d‑Glcp in a molar ratio of 1:12:1:10:3 and its relative and absolute molecular weight were 1.01 × 105 Da and 1.03 × 105 Da respectively. Further, the cytotoxicity assay indicated that CPP1a and CPP1c were more sensitive to HepG2 cells than cervical carcinoma Hela cells and gastric carcinoma MKN45 cells. Both of CPP1a and CPP1c could influence cell morphology, inhibit the migration and induce apoptosis by affecting the G2/M phase of HepG2 cells. Preliminary mechanism studies confirmed that CPP1a and CPP1c could induce apoptosis through up-regulating the ratio of Bax/Bcl-2 and activating caspase-3. According to previous research, we might speculate that the reason for the stronger cytotoxicity and pro-apoptotic effect of CPP1c than that of CPP1a can be attributed to its high uronic acid content.