Main content area

Multiple inputs into a posterior-specific regulatory network in the Ciona notochord

Harder, Matthew, Reeves, Wendy, Byers, Chase, Santiago, Mercedes, Veeman, Michael
Developmental biology 2019 v.448 no.2 pp. 136-146
Ciona, gene regulatory networks, genes, ligands, tail
The gene regulatory networks underlying Ciona notochord fate specification and differentiation have been extensively investigated, but the regulatory basis for regionalized expression within the notochord is not understood. Here we identify three notochord-expressed genes, C11.331, C12.115 and C8.891, with strongly enriched expression in the secondary notochord cells at the posterior tip of the tail. C11.331 and C12.115 share a distinctive expression pattern that is highly enriched in the secondary notochord lineage but also graded within that lineage with the strongest expression at the posterior tip. Both genes show similar responses to pharmacological perturbations of Wnt and FGF signaling, consistent with an important role for Wnt and FGF ligands expressed at the tail tip. Reporter analysis indicates that the C11.331 cis-regulatory regions are extensively distributed, with multiple non-overlapping regions conferring posterior notochord-enriched expression. Fine-scale analysis of a minimal cis-regulatory module identifies discrete positive and negative elements including a strong silencer. Truncation of the silencer region leads to increased expression in the primary notochord, indicating that C11.331 expression is influenced by putative regulators of primary versus secondary notochord fate. The minimal CRM contains predicted ETS, GATA, LMX and Myb sites, all of which lead to reduced expression in secondary notochord when mutated. These results show that the posterior-enriched notochord expression of C11.331 depends on multiple inputs, including Wnt and FGF signals from the tip of the tail, multiple notochord-specific regulators, and yet-to-be identified regulators of regional identity within the notochord.