Main content area

The cytochrome P450BM-1 of Bacillus megaterium A14K is induced by 2,3,7,8-Tetrachlorinated dibenzo-p-dioxin: Biophysical, molecular and biochemical determinants

Hanano, Abdulsamie, Shaban, Mouhnad, Almutlk, Douaa, Almousally, Ibrahem
Chemosphere 2019 v.216 pp. 258-270
Bacillus megaterium, bacteria, biosurfactants, fatty acid composition, fatty acids, hydrophobicity, hydroxylation, membrane permeability, tetrachlorodibenzo-p-dioxin
The current study describes biological changes in Bacillus megaterium A14K cells growing in the presence of 2,3,7,8-Tetrachlorinated dibenzo-p-dioxin (TCDD), the most potent congener of dioxins. The results indicate that the metabolizing of 2,3,7,8-TCDD by BmA14K was accompanied with a novel morphological and biophysical profile typified by the growth of single cells with high levels of biosurfactant production, surface hydrophobicity and cell membrane permeability. Moreover, the TCDD-grown bacteria exhibited a specific fatty acid profile characterized by low ratios of branched/straight chain fatty acids (BCFAs/SCFAs) and saturated/unsaturated fatty acids (SFAs/USFAs) with a specific “signature” due to the presence of branched chain unsaturated fatty acids (BCUFAs). This was synchronized with a significant induction of P450BM-1, an unsaturated fatty acid-metabolizing enzyme in B. megaterium. Subsequently, the profile of oxygenated fatty acids in the TCDD-grown bacteria was typified by the presence of 5,6-epoxy derived from unsaturated C15, C16 and C17 fatty acids, that were absent in control bacteria. A net increase was also detected in both hydroxylated and epoxidized fatty acids, especially those derived from C15:0 and C16:1, respectively, suggesting a specific TCDD-induced “signature” of oxygenated fatty acids in BmA14K. Overall, this study sheds light on the use of B. megaterium A14K as a promising bioindicator/biodegrader of dioxins.