Main content area

Increasing tolerance to bispyribac-sodium is able to allow glutathione homeostasis to recover in indica rice compared with japonica rice

Wang, Hongchun, Guo, Zhijie, Shen, Wenbiao, Lou, Yuanlai
Pesticide biochemistry and physiology 2019 v.153 pp. 28-35
Oryza sativa, acetylcysteine, bispyribac-sodium, cultivars, gene expression, genes, glutathione, glutathione transferase, homeostasis, oxidation, phytotoxicity, rice, weeds, China
The high activity and broad weed spectrum of BS has made it widely used in China. However, accidental crop injuries, particularly occurring in Jiangsu, Hunan, Hubei and Heilongjiang provinces in recent years, have resulted in limiting the application of BS in China. In this study, glutathione homeostasis was measured in the contrasting sensitivity of indica and japonica rice cultivar after bispyribac-sodium (BS) treatment. The results showed that japonica rice cultivar Nanjing 9108 was more sensitive to BS than indica rice Nanjing 11 and indica-hybrid cultivar Guangliangyou 6326. In response to the exposure of BS in all rice cultivars, especially Nanjing 9108, the perturbation of glutathione homeostasis occurred, including the decreased reduced glutathione (GSH) and increased oxidized glutathione (GSSG). These results were supported by increased activities of glutathione S-transferases (GSTs) in Nanjing 11 and Guangliangyou 6326. Further tests revealed that when Nanjing 11 was pretreated with the glutathione-depleting agents L-buthionine-sulfoximine (BSO) or diethylmaleate (DEM), the GSH levels, the activity of GSTs, and the gene expression levels of GR and GSTs decreased, finally increasing the phytotoxicity of BS. The aforementioned DEM inhibitory responses were further rescued by exogenously applied GSH. In contrast, the pretreatment of glutathione or N-acetyl-L-cysteine (NAC) not only increased the contents of GSH, the activities of GSTs, and the expression level of GR and GSTs gene, but also alleviated BS phytotoxicity in Nanjing 9108. In both cultivars, DEM increased phytotoxicity and GSH partially reversed this. This study suggests that increasing tolerance to BS was able to allow glutathione homeostasis to recover in indica rice cultivar compared with japonica rice cultivar.