Main content area

Fermentation of fall-oat balage over winter in northern climates

Coblentz, Wayne K., Muck, Richard E., Cavadini, Jason S.
Crop, forage and turfgrass management 2016 v.1 no.1 pp. 8
Avena sativa, carbon dioxide, climate, developmental stages, ethanol, ethanol production, forage, frost, harvest date, lactic acid, oats, pH, silage, silage fermentation, spring, sugar content, sugars, temperature, winter, yeasts, Wisconsin
The effects of below-freezing temperatures on silage fermentation are poorly understood. Recently, several studies have evaluated the efficacy of producing fall-grown oat as an emergency silage crop within central Wisconsin; this late-season forage option is attractive because the yield potential is good, and because these forages may accumulate significant amounts of sugar following frost events. ‘Vista’ oat from two field sites was harvested at the boot (Experiment 1) or early-heading (Experiment 2) stages of growth, and then baled and ensiled in plastic film on 15 November 2013. Bales were sampled over the winter and spring, concluding with a final sampling date of 15 May. Generally, there was little evidence of silage fermentation prior to internal bale temperatures exceeding 32oF, which occurred on 15 and 13 April for Experiments 1 and 2, respectively. During the final month of sampling, the pH of silages declined to 4.61 and 5.71 for Experiments 1 and 2, respectively. Substantial amounts of ethanol were produced from these respective silages (5.82 and 4.85%), but lactic acid production was much greater for Experiment 1 (4.82%) than for Experiment 2 (1.63%). Silage fermentation within both experiments likely included significant activity by anaerobic yeasts, which metabolize sugars, thereby yielding ethanol, as well as CO2 and H2O. These results suggest that silage fermentation can be delayed until spring by below-freezing temperatures within the ensiled forage mass, and the high sugar content of these oat forages (≥ 21.0%) can encourage the production of ethanol, likely through activity of anaerobic yeasts.