Main content area

Antibiotic resistance genes distribution in microbiomes from the soil-plant-fruit continuum in commercial Lycopersicon esculentum fields under different agricultural practices

Cerqueira, Francisco, Matamoros, Víctor, Bayona, Josep, Piña, Benjamin
The Science of the total environment 2019 v.652 pp. 660-670
Pseudomonadaceae, Solanum lycopersicum var. lycopersicum, agricultural soils, antibiotic resistance genes, fruits, groundwater, irrigation, leaves, microbiome, quantitative polymerase chain reaction, ribosomal DNA, roots, sequence analysis, tomatoes, wastewater, wastewater treatment
While the presence of antibiotic resistance genes (ARGs) in agricultural soils and products has been firmly established, their distribution among the different plant parts and the contribution of agricultural practices, including irrigation with reclaimed water, have not been adequately addressed yet. To this end, we analyzed the levels of seven ARGs (sul1, blaTEM, blaCTX-M-32, mecA, qnrS1, tetM, blaOXA-58), plus the integrase gene intl1, in soils, roots, leaves, and fruits from two commercial tomato fields irrigated with either unpolluted groundwater or from a channel impacted by treated wastewater, using culture-independent, quantitative real-time PCR methods. ARGs and intl1 sequences were found in leaves and fruits at levels representing from 1 to 10% of those found in roots or soil. The relative abundance of intl1 sequences correlated with tetM, blaTEM, and sul1 levels, suggesting a high horizontal mobility potential for these ARGs. High-throughput 16S rDNA sequencing revealed microbiome differences both between sample types (soil plus roots versus leaves plus fruits) and sampling zones, and a correlation between the prevalence of Pseudomonadaceae and the levels of different ARGs, particularly in fruits and leaves. We concluded that both microbiome composition and ARGs levels in plants parts, including fruits, were likely influenced by agricultural practices.