PubAg

Main content area

An improved building detection approach using L-band POLSAR two-dimensional time-frequency decomposition over oriented built-up areas

Author:
Deng, Lei, Yan, Ya-nan, He, Ying, Mao, Zhi-hui, Yu, Jie
Source:
GIScience & remote sensing 2019 v.56 no.1 pp. 1-21
ISSN:
1943-7226
Subject:
buildings, data collection, forests, isotropy, lighting, polarimetry, remote sensing, roads, support vector machines, synthetic aperture radar
Abstract:
The objective of this study is to efficiently extract detailed information about various man-made targets in oriented built-up areas using polarimetric synthetic aperture radar (POLSAR) images. This paper develops an improved approach for building detection by utilizing Two-Dimensional Time-Frequency (2-D TF) decomposition. This method performs outstandingly in distinguishing between man-made and natural targets based on the isotropic behaviors, frequency-sensitive responses, and scattering mechanisms of objects. The proposed method can preserve the spatial resolution and exploit the advantages of TF decomposition; specifically, the exact outlines of buildings can be effectively located, and more types of features (e.g., flat roofs, roads, and walls that are oblique to the radar illumination) can be distinguished from forests in complex built-up areas by 2-D TF decomposition. The coarser-resolution subaperture images that are produced in the azimuth direction, which correspond to different looking angles, are beneficial for detecting man-made structures with main scattering centers oriented at oblique angles with respect to the radar illumination. In the range direction, the obtained subaperture images, which correspond to various observation frequencies, can be helpful in distinguishing flat roofs and roads from forests. This method was successfully implemented to analyze both NASA/JPL L-band AIRSAR and L-band EMISAR data sets. The building detection results of the proposed method exhibit a significant improvement over those of other methods and reach an overall accuracy over 80%, with approximately 20% higher than the accuracies of K-means clustering and the entropy/alpha-Wishart classifier and approximately 10% higher than the accuracy of the support vector machine method. Moreover, building details can be precisely detected, obliquely oriented buildings can be identified, and the distinction between buildings and forests is significantly improved, as both visually and statistically indicated. This method is highly adaptable and has substantial application value.
Agid:
6218159