Main content area

Cellular internalization of polypeptide-based nanoparticles: effects of size, shape and surface morphology

Xue, Jiaxiao, Guan, Zhou, Zhu, Xingyu, Lin, Jiaping, Cai, Chunhua, Jin, Xiao, Li, Yongsheng, Ye, Zhaoyang, Zhang, Wenjie, Jiang, Xinquan
Biomaterials science 2018 v.6 no.12 pp. 3251-3261
composite polymers, fluorescein, isothiocyanates, nanocarriers, nanoparticles, polystyrenes, simulation models, viruses
Nanoparticles (NPs) can be taken up by cells; however, the effects of the structural characteristics of NPs on their cellular internalization have not been well explored. In this work, cellular internalization performances of various NPs including rods with helical surface (helical rods), spheres with stripe-pattern surface (striped spheres), and spheres with smooth surface (smooth spheres) were investigated by a combination of experiments and theoretical simulations. This study focuses on the effects of the size, shape, and surface morphology on their cellular internalization behaviors. These NPs were self-assembled from mixtures of fluorescein isothiocyanate (FITC)-labelled poly(γ-benzyl-l-glutamate)-block-poly(ethylene glycol) (PBLG(FITC)-b-PEG) block copolymers and PBLG or polystyrene (PS) homopolymers. It was found that the NPs possessing smaller size, rod-like shape, and helical/striped surface morphology exhibit higher cellular internalization efficiency. Such differences in the internalization efficiency for the NPs can be attributed to the differences in both their surface areas and internalization pathways. This study could not only guide the design of nanocarriers with enhanced cellular internalization efficiency, but also deepen our understanding of the internalization behavior of natural NPs with similar structures (e.g., virus).