Main content area

Augmentation of endogenous GABA pool size induced by Magainin II peptide

Boostan, Nona, Yazdanparast, Razieh
Biochemical and biophysical research communications 2018 v.506 no.4 pp. 891-894
behavior disorders, body weight, decarboxylation, enzymes, gamma-aminobutyric acid, glutamic acid, hypothalamus, metabolites, mice, models, neurotransmitters, peptides, sodium chloride
Gamma aminobutyric acid (GABA), an inhibitory neurotransmitter, is produced via decarboxylation of l-glutamate through the glutamic acid decarboxylase (GAD) enzyme. The synchronic action of GABA-transaminase (GABA-T) and succinic semialdehyde dehydrogenase (SSADH) enzymes convert the GABA metabolite into succinate. Given this background, our research was aimed at probing the effect of Magainin II, on the activity of GABA shunt metabolizing enzymes.Male NIH mice were administered peripherally by Magainin II (50 μg/kg body weight) and saline solution (%0.9 (w/v)) as the control vehicle. At different time intervals, the mice were sacrificed to evaluate the effect of Magainin II injection on the GABA shunt pathway. The activity of hypothalamic GAD, GABA-T and SSADH enzymes were determined using relevant enzyme assays.Magainin II effectively enhanced the activity of GAD, by %90, 24 h after injection, while quenching the activities of GABA-T and SSADH by %43 and %71, respectively. In vitro models also revealed the direct but reversible interaction between the peptide and each of the individual enzymes of GABA shunt pathway.This study confirms the probable role of Magainin II in increasing the GABA content of the mouse hypothalamus. This property might candidate the peptide as a novel agent for improving the symptoms of many GABA dependent psychiatric disorders.