Main content area

Use of an Anaerobic Granule Biosensor (AGB) as Upset Early Warning Detection (UEWD) Devices

Jiang, Xi, Park, Jaeyoung, Ellis, Timothy G.
Water, air, and soil pollution 2014 v.225 no.2 pp. 1867
ammonium nitrogen, biosensors, chemical oxygen demand, copper, municipal wastewater, phenol, redox potential, toxic substances, wastewater treatment
Many of municipal wastewater treatment plants (WWTPs) are operated by biological process with their excellent performances. However, the early warning system in the influent line is required to avoid the process malfunction because the biological wastewater treatment system has serious drawback to toxic chemicals in the influent. In order to develop a new type of biosensor using anaerobic granules in an online device for rapid detection of toxic inhibitory to the biological process, a porous pot reactor and an anaerobic granule biosensor (AGB) were demonstrated as an upset early warning device (UEWD) in this study. In the first group of toxic loading tests, the prepared cupric chloride solutions were separately injected into both the porous pot and AGB systems at six different concentrations, and phenol solutions were used at three different concentrations in the second group of tests. The results showed the chemical oxygen demand (COD) and ammonia nitrogen (ammonia-N) removal efficiency from porous pot reactor decreased dramatically in response to the addition of Cu²⁺and phenol with the variation of the oxidation-reduction potential (ORP) in AGB. The response of AGB system was 6 to 20 h in advance of porous pot reactor performance response, which suggests that the AGB could potentially be used as an online UEWD.