Main content area

The influence of short-term experimental fasting on biomarker responsiveness in oil WAF exposed mussels

Blanco-Rayón, E., Guilhermino, L., Irazola, M., Ivanina, A.V., Sokolova, I.M., Izagirre, U., Marigómez, I.
Aquatic toxicology 2019 v.206 pp. 164-175
Isochrysis galbana, acetylcholinesterase, biomarkers, cytochrome-c oxidase, diet, digestion, enzyme activity, epithelium, fasting, fuel oils, glutathione transferase, histopathology, lipid peroxidation, long term experiments, monitoring, mussels, nutritional status, polycyclic aromatic hydrocarbons, seawater
Mussels are widely used in toxicological experimentation; however, experimental setups are not standardized yet. Although there is evidence of changes in biomarker values during food digestion and depending on the mussel nutritive status, the mode of feeding differs among toxicological experiments. Typically, mussels are fed with different diets in different long-term experiments, while fasting is the most common approach for short-term studies. Consequently, comparisons among experiments and reliable interpretations of biomarker results are often unfeasible. The present investigation aimed at determining the influence of fasting (against feeding with Isochrysis galbana) on biomarkers and their responsiveness in mussels exposed for 96 h to the water accommodated fraction (WAF) of a heavy fuel oil (0%, 6.25%, 12.5% and 25% WAF in sea water). PAH tissue levels in digestive gland and a battery of biomarkers were compared. WAF exposure led to decrease of cytochrome-C-oxidase activity, modulated glutathione-S-transferase activity, augmented lipid peroxidation, inhibited acetyl cholinesterase (AChE) activity, and led to lysosomal enlargement (VvLYS and S/VLYS) and membrane destabilisation, lipofuscin accumulation, and histopathological alterations (VvBAS, MLR/MET and CTD ratio) in the digestive gland epithelium; and were integrated as IBR/n (biological response index). Overall, no significant changes were recorded in AChE activity, S/VLYS and CTD ratio in any experimental treatment, while all the other biomarkers showed significant changes depending on the fasting/feeding condition, the exposure to WAF and/or their interaction. As a result, the integrated biomarker index IBR/n was higher at increasing WAF exposure levels both in fasted and fed mussels albeit the response was more marked in the latter. The response profiles were qualitatively similar between fasted and fed mussels but quantitatively more pronounced in fed mussels, especially upon exposure to the highest concentration (25% WAF). Therefore, it is highly recommended that mussels are also supplied with food during short-term, like during long-term toxicological experiments. This practice would avoid the interference of fasting with biological responses elicited by the tested chemicals and allow for reliable comparison with data obtained in long-term experiments and monitoring programmes.