Main content area

A new method for assessing the efficacy of emission control strategies

Luo, Huiying, Astitha, Marina, Hogrefe, Christian, Mathur, Rohit, Rao, S. Trivikrama
Atmospheric environment 2019 v.199 pp. 233-243
air quality, atmospheric chemistry, climate change, emissions, issues and policy, meteorological parameters, monitoring, ozone, probability, simulation models, time series analysis, United States
Regional-scale air quality models and observations at routine air quality monitoring sites are used to determine attainment/non-attainment of the ozone air quality standard in the United States. In current regulatory applications, a regional-scale air quality model is applied for a base year and a future year with reduced emissions using the same meteorological conditions as those in the base year. Because of the stochastic nature of the atmosphere, the same meteorological conditions would not prevail in the future year. Therefore, we use multi-decadal observations to develop a new method for estimating the confidence bounds for the future ozone design value (based on the 4th highest value in the daily maximum 8-hr ozone concentration time series, DM8HR) for each emission loading scenario along with the probability of the design value exceeding a given ozone threshold concentration at all monitoring sites in the contiguous United States. To this end, we spectrally decompose the observed DM8HR ozone time series covering the period from 1981 to 2014 using the Kolmogorov-Zurbenko (KZ) filter and examine the variability in the relative strengths of the short-term variations (induced by synoptic-scale weather fluctuations; referred to as synoptic component, SY) and the long-term component (dictated by changes in emissions, seasonality and other slow-changing processes such as climate change; referred to as baseline component, BL). Results indicate that combining the projected change in the ozone baseline level with the adjusted synoptic forcing in historical ozone observations enables us to provide a probabilistic assessment of the efficacy of a selected emissions control strategy in complying with the ozone standard in future years. In addition, attainment demonstration is illustrated with a real-world application of the proposed methodology by using air quality model simulations, thereby helping build confidence in the use of regional-scale air quality models for supporting regulatory policies.