Main content area

Glacier facies of Vestfonna (Svalbard) based on SAR images and GPR measurements

Barzycka, Barbara, Błaszczyk, Małgorzata, Grabiec, Mariusz, Jania, Jacek
Remote sensing of environment 2019 v.221 pp. 373-385
climate change, energy, glaciers, ground-penetrating radar, ice, image analysis, polarimetry, remote sensing, synthetic aperture radar, Arctic region, Norway
The warming climate of the Arctic affects the mass budget of glaciers, and changes in the distribution of glacier facies are indicative of their response to climate change. The glacial mass budget over large land ice masses can be estimated by remote sensing techniques, but selecting an efficient remote sensing method for recognizing and mapping glacier facies in the Arctic remains a challenge. In this study, we compared several methods of distinguishing the facies of the Vestfonna ice cap, Svalbard, based upon Synthetic Aperture Radar (SAR) images and terrestrial high frequency Ground Penetrating Radar (GPR) measurements. Glacier zones as determined using the backscattering coefficient (sigma0) of SAR images were compared against GPR data, and an alternative application of Internal Reflection Energy (IRE) calculated from terrestrial GPR data was also used for differentiating the extent of glacier facies. The IRE coefficient was found to offer a suitable method for distinguishing glacier zones and for validating SAR analysis. Furthermore, results of analysis of fully polarimetric Phased Array type L-band Synthetic Aperture Radar (ALOS PALSAR) and European Remote Sensing Synthetic Aperture Radar (ERS-2 SAR) images were compared with the IRE coefficient classification. Especially promising method is H-α segmentation, where the glacier zone boundaries corresponded very well with both GPR visual interpretation and IRE classification results. The IRE coefficient's simplicity of calculation makes it a good alternative to the subjective GPR visual interpretation method, where results strongly depend on the operator's level of experience. We therefore recommend for GPR profiles to be used for additional validation of SAR image analysis in studies of glacier facies on the High Arctic ice masses.