Main content area

Recombinant infectious laryngotracheitis virus expressing Newcastle disease virus F protein protects chickens against infectious laryngotracheitis virus and Newcastle disease virus challenge

Shao, Yuhao, Sun, Junfeng, Han, Zongxi, Liu, Shengwang
Vaccine 2018 v.36 no.52 pp. 7975-7986
Gallid herpesvirus 1, Newcastle disease virus, Western blotting, chickens, enzyme-linked immunosorbent assay, fluorescent antibody technique, genes, genotype, growth models, mutants, neutralizing antibodies, signs and symptoms (animals and humans), specific pathogen-free animals, vaccination, vaccines
In this study, we isolated and identified an infectious laryngotracheitis virus (ILTV) that was naturally avirulent in specific pathogen-free (SPF) chickens, with the aim of developing a more efficacious vaccine against ILTV and Newcastle disease virus (NDV). We constructed a US9-deleted ILTV mutant based on this avirulent ILTV, and then constructed a recombinant ILTV (designated ILTV-ΔUS9-F) expressing the fusion protein (F) of the genotype VII NDV based on the US9-deleted ILTV mutant. Expression of the F protein in ILTV-ΔUS9-F-infected cells was confirmed by indirect immunofluorescence assay and western blotting. The inserted F gene was stably expressed in ILTV-ΔUS9-F. The growth kinetics of ILTV-ΔUS9-F were comparable to those of the wild-type ILTV strain. Vaccination of SPF chickens with ILTV-ΔUS9-F produced no clinical signs but did induce low levels of NDV-specific enzyme-linked immunosorbent assay and neutralizing antibodies. A single vaccination with 104 plaque-forming units (PFU) of ILTV-ΔUS9-F provided good protection against both genotype VII and IX NDVs based on clinical signs, similar to the protection provided by the commercial live La Sota vaccine. Notably, ILTV-ΔUS9-F limited the replication and shedding of genotype VII NDV from oropharyngeal swabs more efficiently than the La Sota vaccine. In addition, vaccination with lower doses (103 and 102 PFU) of ILTV-ΔUS9-F also provided sufficient clinical protection. These results indicated that ILTV-ΔUS9-F may be a bivalent vaccine candidate against both ILTV and NDV.