U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Https

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

PubAg

Main content area

Nitrogen Applications for Wheat Production across Tillage Systems in Alabama

Author:
K. S. Balkcom, C. H. Burmester
Source:
Agronomy journal 2015 v.107 no.2 pp. 425-434
ISSN:
0002-1962
Subject:
Triticum aestivum, biomass, coastal plain soils, coastal plains, conventional tillage, crop yield, crude protein, developmental stages, farmers, fertilizer rates, fertilizer requirements, limestone, nitrogen, nitrogen content, nitrogen fertilizers, no-tillage, planting, valleys, wheat, Alabama
Abstract:
Alabama wheat (Triticum aestivum L.) farmers are changing management practices, which include using higher N fertilizer rates and planting wheat with no-tillage or other conservation tillage systems to maximize yields. Experiments were conducted to (i) determine the level of tillage necessary to optimize wheat yields across different regions of Alabama and (ii) determine if N requirements change across tillage systems and regions in Alabama at four locations resulting in 9 site-year comparisons. Each experiment consisted of a split-plot design with tillage as the main plot and 12 N fertilizer treatments as subplots, replicated four times to compare Zadoks’ Growth Stage (GS)-30 tiller densities, tiller N concentrations, tiller biomass, GS-31 wheat biomass, biomass N concentration, wheat yields, and grain crude protein. Nitrogen treatments consisted of different rates across fall, GS-30, and GS-31 application times. Tillage systems had no effect on tiller density, tiller N concentration, or tiller biomass, but fall N increased tiller density 15% and tiller biomass 34% across Coastal Plain locations. Non-inversion tillage increased wheat yields 13% on Coastal Plain soils compared to conventional tillage. Fall N increased wheat yields 10%, and N applied at GS-30 improved yields 18% compared to delaying application until GS-31, indicating application of fall N and applying total N by GS-30 was imperative for successful wheat production on Coastal Plain soils. Neither tillage system nor N applications affected wheat production extensively across the Limestone Valley. Non-inversion tillage or no-tillage with current recommended N practices can be successfully used in Alabama wheat production.
Agid:
62404
Handle:
10113/62404