U.S. flag

An official website of the United States government

PubAg

Main content area

MOCASSIN-prot: a multi-objective clustering approach for protein similarity networks

Author:
Keel, Brittney N, Deng, Bo, Moriyama, Etsuko N, Hancock, John
Source:
Bioinformatics 2018 v.34 no.8 pp. 1270-1277
ISSN:
1460-2059
Subject:
bioinformatics, computer software, genome, protein structure, proteins, sequence homology
Abstract:
Proteins often include multiple conserved domains. Various evolutionary events including duplication and loss of domains, domain shuffling, as well as sequence divergence contribute to generating complexities in protein structures, and consequently, in their functions. The evolutionary history of proteins is hence best modeled through networks that incorporate information both from the sequence divergence and the domain content. Here, a game-theoretic approach proposed for protein network construction is adapted into the framework of multi-objective optimization, and extended to incorporate clustering refinement procedure. The new method, MOCASSIN-prot, was applied to cluster multi-domain proteins from ten genomes. The performance of MOCASSIN-prot was compared against two protein clustering methods, Markov clustering (TRIBE-MCL) and spectral clustering (SCPS). We showed that compared to these two methods, MOCASSIN-prot, which uses both domain composition and quantitative sequence similarity information, generates fewer false positives. It achieves more functionally coherent protein clusters and better differentiates protein families. MOCASSIN-prot, implemented in Perl and Matlab, is freely available at http://bioinfolab.unl.edu/emlab/MOCASSINprot. Supplementary data are available at Bioinformatics online.
Agid:
6249257
Handle:
10113/6249257