Main content area

Biopreservation potential of antimicrobial protein producing Pediococcus spp. towards selected food samples in comparison with chemical preservatives

Skariyachan, Sinosh, Govindarajan, Sanjana
International journal of food microbiology 2019 v.291 pp. 189-196
Escherichia coli, Pediococcus, Shigella, antimicrobial proteins, bacteria, bacteriocins, biopreservation, biopreservatives, microbiological quality, molecular biology, plate count, protocols, shelf life, sodium benzoate, sodium sulfite
The present study elucidates biopreservation potential of an antimicrobial protein; bacteriocin, producing Pediococcus spp. isolated from dairy sample and enhancement of their shelf life in comparison with two chemical preservatives. The antimicrobial protein producing Pediococcus spp. was isolated from selected diary samples and characterised by standard microbiology and molecular biology protocols. The cell free supernatant of Pediococcus spp. was applied on the selected food samples and monitored on daily basis. Antimicrobial potential of the partially purified protein from this bacterium was tested against clinical isolates by well diffusion assay. The preservation efficiency of bacteriocin producing isolate at various concentrations was tested against selected food samples and compared with two chemical preservatives such as sodium sulphite and sodium benzoate. The bacteriocin was partially purified and the microbiological qualities of the biopreservative treated food samples were assessed. The present study suggested that 100 μg/l of bacteriocin extract demonstrated antimicrobial potential against E. coli and Shigella spp. The treatment with the Pediococcus spp. showed enhanced preservation at 15 mL/kg of selected samples for a period of 15 days in comparison with sodium sulphite and sodium benzoate. The microbiological quality of food samples treated with biopreservative showed lesser total bacterial count (CFU/g) in comparison with the food samples applied with chemicals (p ≤ 0.05). Thus, the present study suggests that bacteriocin producing Pediococcus probably provides enhanced shelf life to the selected food samples and can be used as biopreservatives.