PubAg

Main content area

Canola integration into semi-arid wheat cropping systems of the inland Pacific Northwestern USA

Author:
Pan, W. L., Young, F. L., Maaz, T. M., Huggins, D. R.
Source:
Crop & pasture science 2016 v.67 no.4 pp. 253-265
ISSN:
1836-0947
Subject:
agricultural machinery and equipment, agroecological zones, canola, climate change, cold, crop insurance, crop rotation, cultivars, direct seeding, disease control, economic analysis, ecophysiology, energy crops, fallow, fuel production, issues and policy, markets, oilseed crops, plant adaptation, planting, prediction, risk, seedlings, semiarid zones, soil, spring, summer, weed control, weeds, wheat, winter, Northwestern United States, Pacific States
Abstract:
The inland Pacific Northwestern USA (iPNW) wheat-producing region has a diversity of environments and soils, yet it lacks crop diversity and is one of the few semi-arid wheat-growing regions without significant integration of oilseeds. Four major agroecological zones, primarily characterised by water availability, feature distinctly different fallowed and annually cropped systems, each presenting different challenges and opportunities to integrate winter and spring canola. Although major interests in regional energy crops and rotational diversification spurred feasibility research on iPNW canola food, feed and fuel production in the 1970s, commercial canola adaptation has lagged behind other semi-arid wheat regions for various socioeconomic, ecophysiological and agronomic reasons. New federal crop insurance policies will reduce economic risks in new crop adaptation, and oilseed processing facilities are creating new local markets. Although canola management largely relies on wheat farm equipment, agronomic approaches require strategic adjustments to account for physiological differences between canola and cereals including seed size, seedling morphology and responses to temperature extremes. Climate change predictions for the region threaten to exacerbate current hot and dry summers and research aims to develop and adapt flexible winter and spring canola-based systems to regional water and temperature stressors in each zone. Adaptation will require novel planting, fertilisation and weed control strategies to successfully establish improved winter canola cultivars in hot dry summers that survive cold winters, and spring canola cultivars direct-seeded in cool wet springs. The adaptation of winter and spring canola will somewhat mirror the rotational placement of winter and spring cereals within each zone. Economic analysis of oilseed break crop benefits such as weed and disease control will help to demonstrate the medium-term economic benefits of crop diversification to support the growth of a regional canola industry in the iPNW.
Agid:
62553
Handle:
10113/62553