Main content area

Modeling and simulation of biogas-fueled power system

Saeed, Mohammed, Fawzy, Samaa, El-Saadawi, Magdi
International journal of green energy 2019 v.16 no.2 pp. 125-151
anaerobic digesters, animal manures, biogas, computer software, electricity, farms, gas production (biological), magnetic materials, models, power plants, temperature, turbines
The main objective of this paper is to develop a complete model that fully simulate a biogas-fueled power plant which can be used to supply a rural farm with sufficient electricity. The reactor is fed with animal manure of the farm. The proposed model consists of three main parts; a biogas reactor, a microturbine (MT) coupled to a permanent magnet synchronous generator, and a storage system. The model describes the dynamics of an MT and it is suitable for both steady state and transient simulation and analysis. The volume of biogas output delivered from the Anaerobic Digester depends on the reactor volume, reactor temperature, and animal manure type. The storage system is used to store the excess value of biogas if any. It is composed of two parts: a comparator and a storage tank. The comparator compares the volume of biogas produced by the reactor with that needed to supply the load. An adaptive controller is developed to withstand the system against any transient condition such as suddenly load increase/decrease. The proposed model is implemented for chemical and physical behaviors of the biogas production process, as well as for different variables of MT-generator operations. The model is implemented in Matlab/Simulink environment and tested under different operating conditions in both steady state and transient status to study the impacts of different variables on the system output. The output results prove its applicability and effectiveness under different operating conditions.