Main content area

Fe(II)-Catalyzed Ligand-Controlled Dissolution of Iron(hydr)oxides

Biswakarma, Jagannath, Kang, Kyounglim, Borowski, Susan C., Schenkeveld, Walter D.C., Kraemer, Stephan M., Hering, Janet G., Hug, Stephan J.
Environmental science & technology 2018 v.53 no.1 pp. 88-97
EDTA (chelating agent), air, anaerobic conditions, catalytic activity, electron transfer, infrared spectroscopy, iron, irradiation, isotopes, kinetics, lepidocrocite, ligands, oxides, pH, soil, surface water, ultraviolet radiation
Dissolution of iron(III)phases is a key process in soils, surface waters, and the ocean. Previous studies found that traces of Fe(II) can greatly increase ligand controlled dissolution rates at acidic pH, but the extent that this also occurs at circumneutral pH and what mechanisms are involved are not known. We addressed these questions with infrared spectroscopy and ⁵⁷Fe isotope exchange experiments with lepidocrocite (Lp) and 50 μM ethylenediaminetetraacetate (EDTA) at pH 6 and 7. Addition of 0.2–10 μM Fe(II) led to an acceleration of the dissolution rates by factors of 7–31. Similar effects were observed after irradiation with 365 nm UV light. The catalytic effect persisted under anoxic conditions, but decreased as soon as air or phenanthroline was introduced. Isotope exchange experiments showed that added ⁵⁷Fe remained in solution, or quickly reappeared in solution when EDTA was added after ⁵⁷Fe(II), suggesting that catalyzed dissolution occurred at or near the site of ⁵⁷Fe incorporation at the mineral surface. Infrared spectra indicated no change in the bulk, but changes in the spectra of adsorbed EDTA after addition of Fe(II) were observed. A kinetic model shows that the catalytic effect can be explained by electron transfer to surface Fe(III) sites and rapid detachment of Fe(III)EDTA due to the weaker bonds to reduced sites. We conclude that the catalytic effect of Fe(II) on dissolution of Fe(III)(hydr)oxides is likely important under circumneutral anoxic conditions and in sunlit environments.