PubAg

Main content area

Pollutant source analysis and tempo-spatial analysis of pollutant discharge intensity in a transboundary river basin

Author:
Lu, Hongwei, Yu, Sen
Source:
Environmental science and pollution research international 2019 v.26 no.2 pp. 1336-1354
ISSN:
0944-1344
Subject:
industry, models, planting, pollutants, pollution control, poultry, prediction, surface water, water pollution, watersheds
Abstract:
From the perspective of river basin refined management and pollution control of water bodies, a transboundary river basin and its regional pollutant sources are identified and the typical status of discharging processes of different pollutant sources are screened. Then organic connection which can comprehensively reflect and dynamically characterize the discharge of transboundary water pollutants is constructed. In addition, the integrated prediction (IP) model of the transboundary river basin and its regional water pollutants discharge is established. Finally, the dynamic simulation of typical status characteristics of the transboundary river basin and its regional pollutant sources discharge as well as the tempo-spatial changing pattern of pollutant discharge intensity is conducted in this paper. This paper selected the Songhua River basin as an example where planting, industry, household (urban living and rural living), and livestock and poultry are the main pollutant sources. The dynamic simulation of water pollution discharge in Songhua River basin during the 13th Five-year Plan and its tempo-spatial changing trend analysis are conducted by employing the established IP model of transboundary river basin water pollution discharge. The results show that during the 13th Five-year Plan, through comprehensive management and control of pollutant sources in Songhua River basin, the discharge amounts of different pollutant sources (planting, industry, household, livestock, and poultry) present an overall decreasing trend and the main pollutants discharge intensity decreases significantly year by year. It is demonstrated that pollution discharge in Songhua River basin is controlled effectively.
Agid:
6275288