U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.


Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.


Main content area

Assessing ecosystem functioning in forests undergoing restoration

Milena Fermina Rosenfield, Sandra Cristina Müller
Restoration ecology 2019 v.27 no.1 pp. 158-167
carbon nitrogen ratio, detritivores, ecosystems, functional diversity, natural regeneration, soil, species richness, trees, tropical forests, vegetation structure, Brazil
Restoration projects may have broad and complex ecological goals that require distinct and integrative measures for evaluating restoration development and success. However, most studies usually evaluate structural and species composition parameters, with less emphasis on ecological processes and functioning. The main objective of this study is to use an integrated approach that considers structural and floristic parameters as well as ecological processes and functional traits to evaluate and identify the parameters that most differentiate forests undergoing restoration and their reference sites. Additionally, we tested if the recovery of ecosystem functionality happens at the same rate as the recovery of vegetation structure. We performed the study in three 10‐year‐old restoration and three adjacent reference areas located in the south of Brazil (subtropical forest). We sampled a total of 15 plots (100 m² in size) per treatment, per site and collected data of trees, natural regeneration, litter stock, decomposition, detritivory, and litter and soil C:N ratio. We also used a multifunctionality index to account for the broad functionality of the ecosystem. Results showed that forests undergoing restoration had lower values of vegetation structure and multifunctionality, indicating that restoration sites have not yet achieved values similar to the reference ecosystem. Values for species richness and functional diversity, however, were higher in restoration sites. Moreover, even though values were lower for multifunctionality, differences toward reference sites were less pronounced than we expected when compared to values of vegetation structure, showing that ecological processes may recover even before the full recovery of aboveground vegetation.