PubAg

Main content area

Purification and characterization of Bowman-Birk and Kunitz isoinhibitors from the seeds of Rhynchosia sublobata (Schumach.) Meikle, a wild relative of pigeonpea

Author:
Mohanraj, Soundappan S., Gujjarlapudi, Mariyamma, Lokya, Vadthya, Mallikarjuna, Nalini, Dutta-Gupta, Aparna, Padmasree, Kollipara
Source:
Phytochemistry 2019 v.159 pp. 159-171
ISSN:
0031-9422
Subject:
Achaea janata, Helicoverpa armigera, Rhynchosia, Western blotting, acetates, antibodies, chromatography, chymotrypsin, circular dichroism spectroscopy, denaturation, inhibitory concentration 50, insecticidal properties, matrix-assisted laser desorption-ionization mass spectrometry, pigeon peas, seeds, solubility, spectral analysis, trypsin, trypsin inhibitors, two-dimensional gel electrophoresis, wild relatives
Abstract:
Rhynchosia sublobata, a wild relative of pigeonpea, possesses defensive proteinase/protease inhibitors (PIs). Characterization of trypsin specific PIs (RsPI) separated from seeds by column chromatography using 2-D gel electrophoresis and Edman degradation method identified R. sublobata possessed both Bowman-Birk isoinhibitors (RsBBI) and Kunitz isoinhibitors (RsKI). A quick method was developed to separate RsBBI and RsKI from RsPI based on their differential solubility in TCA and acetate buffer. N-terminus sequencing of RsBBI and RsKI by MALDI-ISD ascertained the presence of Bowman Birk and Kunitz type isoinhibitors in R. sublobata. RsBBI (9216 Da) and RsKI (19,412 Da) exhibited self-association pattern as revealed by western blotting with anti-BBI antibody and MALDI-TOF peptide mass fingerprint analysis, respectively. RsBBI and RsKI varied significantly in their biochemical, biophysical and insecticidal properties. RsBBI inhibited the activity of trypsin (Ki = 128.5 ± 4.5 nM) and chymotrypsin (Ki = 807.8 ± 23.7 nM) while RsKI (Ki = 172.0 ± 9.2 nM) inhibited the activity of trypsin alone, by non-competitive mode. The trypsin inhibitor (TI) and chymotrypsin inhibitor (CI) activities of RsBBI were stable up to 100 °C. But, RsBBI completely lost its TI and CI activities on reduction with 3 mM DTT. Conversely, RsKI lost its TI activity on heating at 100 °C and retained >60% of its TI activity in presence of 3 mM DTT. CD spectroscopic studies on RsBBI and RsKI showed their secondary structural elements in the following order: random coils > β-sheets/β-turns > α-helix. However, RsKI showed reversible denaturation midpoint (Tm) of 75 °C. Further, the significant inhibitory activity of RsBBI (IC50 = 24 ng) and RsKI (IC50 = 59 ng) against trypsin-like gut proteases of Achaea janata (AjGPs) and Helicoverpa armigera (HaGPs) suggest them as potential biomolecules in the management of A. janata and H. armigera, respectively.
Agid:
6281454