U.S. flag

An official website of the United States government


Main content area

The effects on digestibility and ruminal measures of chemically treated corn stover as a partial replacement for grain in dairy diets1

Cook, D.E., Combs, D.K., Doane, P.H., Cecava, M.J., Hall, M.B.
Journal of dairy science 2016 v.99 no.8 pp. 6342-6351
Holstein, alkali treatment, ambient temperature, body weight, butyrates, calcium oxide, cannulas, corn, corn stover, dairy cows, diet, digestibility, digestion, dry matter intake, energy, feeds, grinding, lactation, milk, milk yield, neutral detergent fiber, organic matter, pH, prices, rumen, straw, water content
Alkaline treatment of gramineous crop residues can convert an abundant, minimally utilized, poorly digestible straw into a moderately digestible feedstuff. Given the volatile nature of grain prices, substitution of treated stover for grain was investigated with dairy cows to provide insights on ruminal and digestibility effects of a feed option that makes use of alternative, available resources. The objective of this study was to evaluate changes in diet digestibility and ruminal effects when increasing levels of calcium oxide-treated corn stover (CaOSt) were substituted for corn grain in diets of lactating cows. Mature corn stover was treated with calcium oxide at a level of 50g∙kg−1 dry matter (DM), brought up to a moisture content of 50% following bale grinding, and stored anaerobically at ambient temperatures for greater than 60d before the feeding experiment. Eight ruminally cannulated Holstein cows averaging 686kg of body weight and 35kg of milk∙d−1 were enrolled in a replicated 4×4 Latin square, where CaOSt replaced corn grain on a DM basis in the ration at rates of 0, 40, 80, and 120g∙kg−1 DM. All reported significant responses were linear. The DM intake declined by approximately 1kg per 4% increase in CaOSt inclusion. With increasing replacement of corn grain, dietary neutral detergent fiber (NDF) concentration increased. However, rumen NDF turnover, NDF digestibility, NDF passage rate, and digestion rate of potentially digestible NDF were unaffected by increasing CaOSt inclusion. Total-tract organic matter digestibility declined by 5 percentage units over the range of treatments, approximately 1.5 units per 4-percentage-unit substitution of CaOSt for grain. With increasing CaOSt, the molar proportions of butyrate and valerate declined, whereas the lowest detected ruminal pH increased from 5.83 to 5.94. Milk, fat, and protein yields declined as CaOSt increased and DM intake declined with the result that net energy in milk declined by approximately 1 Mcal per 4% increase in CaOSt. Time spent ruminating (min∙kg−1 DM intake) increased with increasing CaOSt, though total minutes per day were unaffected. These insights on the effect of substitution of treated corn stover for corn grain may be used to predict the effect on nutrient supply to the cow over a range of substitution levels. The acceptability of the effect will depend on the economics of milk production and availabilities of feedstuffs.