Main content area

Removal of steroid hormones and biocides from rural wastewater by an integrated constructed wetland

Chen, Jun, Liu, You-Sheng, Deng, Wen-Jing, Ying, Guang-Guo
The Science of the total environment 2019 v.660 pp. 358-365
aquatic organisms, biocides, constructed wetlands, cost effectiveness, deet, livestock, risk, sewage, sewage treatment, steroid hormones, villages, wastewater, wastewater treatment, China
Steroid hormones and biocides are regarded as emerging contaminants in rural wastewater in China, owing to their widespread occurrence and adverse effects on both aquatic organisms and humans. Constructed wetlands (CWs) are an alternative technology for cost-effective and efficient decentralized rural sewage treatment. In this study, an integrated constructed wetland (ICW) system was built and used to treat a typical rural wastewater mixture composed of domestic sewage and livestock wastewater from a small village. As expected, five steroid hormones (ADD, AED, 19-NTD, T, and P) and four biocides (DEET, TCS, CBD, and MP) were detected in the influent in concentrations ranging from 30.5 ± 1.25 ng/L to 105 ± 5.14 ng/L and from 63.4 ± 2.85 ng/L to 515 ± 19.7 ng/L, respectively. The ICW system effectively removed the detected steroid hormones (97.4 ± 0.09%) and biocides (92.4 ± 0.54%). Based on the measured concentrations, the total pollution loadings of the detected steroid hormones and biocides in the influent were calculated to be 2330 ± 26.5 μg/day and 5710 ± 196 μg/day, which decreased to 60.8 ± 1.44 μg/day and 433 ± 25.6 μg/day in the final effluent. The risk quotients for these steroid hormones and biocides in the effluent from the ICW system were lower than those from reported wastewater treatment plants, indicating that CWs are a promising technology for removing contaminants including steroid hormones and biocides in rural wastewater, although additional efforts are required to optimize and improve the design of CWs before the steroid hormones and biocides present in the effluent can be safely and directly discharged into the environment.