Main content area

Inhibiting plasmid mobility: The effect of isothiocyanates on bacterial conjugation

Kwapong, Awo Afi, Stapleton, Paul, Gibbons, Simon
International journal of antimicrobial agents 2019 v.53 no.5 pp. 629-636
Escherichia coli, allyl isothiocyanate, anti-infective agents, antibiotic resistance genes, benzyl isothiocyanate, genetic conjugation, host range, microorganisms, multiple drug resistance, plasmids
Bacterial conjugation is the main mechanism for the transfer of multiple antimicrobial resistance genes among pathogenic micro-organisms. This process may be controlled by compounds that inhibit bacterial conjugation. In this study, the effects of allyl isothiocyanate, l-sulforaphane, benzyl isothiocyanate, phenylethyl isothiocyanate and 4-methoxyphenyl isothiocyanate on the conjugation of broad-host-range plasmids harbouring various antimicrobial resistance genes in Escherichia coli were investigated, namely plasmids pKM101 (IncN), TP114 (IncI2), pUB307 (IncP) and the low-copy-number plasmid R7K (IncW). Benzyl isothiocyanate (32 mg/L) significantly reduced conjugal transfer of pKM101, TP114 and pUB307 to 0.3 ± 0.6%, 10.7 ± 3.3% and 6.5 ± 1.0%, respectively. l-sulforaphane (16 mg/L; transfer frequency 21.5 ± 5.1%) and 4-methoxyphenyl isothiocyanate (100 mg/L; transfer frequency 5.2 ± 2.8%) were the only compounds showing anti-conjugal specificity by actively reducing the transfer of R7K and pUB307, respectively.