PubAg

Main content area

Anchoring gold nanoparticles on poly(3,4-ethylenedioxythiophene) (PEDOT) nanonet as three-dimensional electrocatalysts toward ethanol and 2-propanol oxidation

Author:
Wang, Caiqin, Zhang, Ke, Xu, Hui, Du, Yukou, Goh, M. Cynthia
Source:
Journal of colloid and interface science 2019 v.541 pp. 258-268
ISSN:
0021-9797
Subject:
carbon, catalysts, catalytic activity, clean energy, durability, electrodes, energy conversion, ethanol, fuels, gold, isopropyl alcohol, liquids, nanogold, oxidation
Abstract:
Renewable alcohol oxidation is of vital significance for clean energy conversion and storage. Here, we fabricated a three-dimensional (3D) nanonet-like hybrid catalyst combining Au nanoparticles and poly(3,4-ethylenedioxythiophene) (PEDOT) together, in which PEDOT nanonets act as the framework of the 3D catalyst and the support for the dispersion of Au nanoparticles. The catalyst was designated as Au-PEDOT. By using conductive carbon cloth (CC) as electrode substrates, the as-fabricated Au-PEDOT/CC electrodes were applied to evaluate the electrocatalytic activity towards ethanol and 2-propanol in the alkaline media, respectively. The catalytic activity on Au-PEDOT/CC in terms of the peak current and/or peak current density towards ethanol and 2-propanol oxidation is five times higher than that on comparative Au/CC catalysts, respectively, which is also higher than that on some similar materials reported in the literature. In addition, the Au-PEDOT/CC electrode also possessed great durability and reproducibility. This enhancement in electrocatalytic activity can be attributed to a number of factors: the nano-scale of the Au catalysts, the 3D nanostructure of the catalysts, the conductivity of PEDOT, as well as the effect of alkaline media. These results indicate the as-synthesized Au-PEDOT is a promising electrocatalyst for liquid fuel oxidation.
Agid:
6289064