PubAg

Main content area

Aerobic metabolic trichloroethene biodegradation under field-relevant conditions

Author:
Gaza, Sarah, Schmidt, Kathrin R., Weigold, Pascal, Heidinger, Michael, Tiehm, Andreas
Source:
Water research 2019 v.151 pp. 343-348
ISSN:
0043-1354
Subject:
bioaugmentation, biodegradation, enrichment culture, groundwater, groundwater contamination, organochlorine compounds, pH, starvation, vinyl chloride
Abstract:
Chloroethenes belong to the most widely distributed groundwater contaminants. Since 2014, it has been known that trichloroethene (TCE) can be degraded aerobically and metabolically as growth substrate by a mixed bacterial enrichment culture (named SF culture). In this study, the degradation capabilities under a range of field-relevant conditions were investigated in fixed-bed reactors as well as in batch experiments. Aerobic metabolic TCE degradation was stable over the long term, with degradation optima at 22 °C and pH 7. Degradation of up to 400 μM TCE was observed. The longest starvation period after which degradation of TCE was regained was 112 days. The possible co-contaminants perchloroethene, trans-1,2-dichloroethene, and cis-1,2-dichloroethene did not inhibit TCE degradation, even though they were not degraded themselves. The presence of equimolar amounts of 1,1-dichloroethene and vinyl chloride inhibited TCE degradation. Experiments with groundwater from different chloroethene-contaminated field sites proved the potential of the SF culture for bioaugmentation. Thus, aerobic metabolic TCE degradation should be considered as a promising method for the bioremediation of field sites with TCE as the main contaminant.
Agid:
6290217