Main content area

Transient characteristics of a parabolic trough direct-steam-generation process

Li, Lu, Sun, Jie, Li, Yinshi, He, Ya-Ling, Xu, Haojie
Renewable energy 2019 v.135 pp. 800-810
algorithms, clean energy, evaporation, light intensity, models, power generation, renewable energy sources, solar collectors, steam, temperature, tin
Solar-powered direct steam generation (DSG) is attractive for power generation and industrial utilization due to the combination of renewable-energy source and clean energy carrier. An improved SIMPLE algorithm ensuring the dual roles of pressure acting on velocity and density fields is developed to realize thermo-hydraulic completely-coupled modeling of a typical DSG loop with transient phase-change and multiple flow-patterns. The excitation-response characteristics of the loop were investigated under various step-variations of direct normal irradiance (DNI), inlet mass flowrate (min) and inlet temperature (tin). Increasing DNI (decreasing min) is found to narrow the preheating-evaporation regions and expand the superheating region, and vice versa. While under step-variations of tin, the evaporation region almost remains unchanged (about 403 m). The water slides to a lower temperature faster than climbs to a higher one under variations of DNI (up to 670s vs. 2960s) and min (up to 1184s vs. 4420s), simultaneously the outlet temperature (tout) staying a monotonical response-trend. However, under tin variations, tout holds a higher-order trait. The responses of both pressure and velocity are tightly coupled and always hold higher-order trait. The response time of the total mass in the loop is almost 2.5 to 5.5 times as fast as tout.