U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.


Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.


Main content area

Evaluating Winter/Spring Seeding of a Native Perennial Bunchgrass in the Sagebrush Steppe

Chad S. Boyd, Jarod A. Lemos
Rangeland ecology & management 2015 v.68 no.6 pp. 494-500
Artemisia tridentata, Pseudoroegneria spicata, bags, basins, demographic statistics, environmental factors, germination, grasses, harvesting, overwintering, plant communities, planting date, seedlings, seeds, sowing, spring, wildfires, winter, Oregon
Sagebrush (Artemisia tridentata Nutt.) plant communities in the Great Basin region are being severely impacted by increasingly frequent wildfires in association with the expansion of exotic annual grasses. Maintaining native perennial bunchgrasses is key to controlling annual grass expansion, but postfire restoration of these species has proven difficult with traditional fall drill-seeding. We investigated the potential for winter/spring seeding bluebunch wheatgrass (Pseudoroegneria spicata [Pursh] A. Love) in southeast Oregon. In 2011–2013, 500 seeds were planted in fall, or weekly from March through early May in 1·m-2 plots using a randomized block design with 5 replications. Germination was estimated using buried bags, and emergent seedlings were counted weekly from March to June. Germination and emergence varied strongly between years and by within-year timing of planting. With adequate precipitation, percent germination was high (up to 100%) regardless of timing of planting and emergence density decreased (P ≤ 0.05) with advancing winter/spring planting date in drier years. Emergence density was high (approaching 300 plants/m-2) with adequate precipitation but varied strongly across planting weeks for winter/spring plantings. Percent survival of emergent seedlings to harvest (July) was approximately 25–50% lower (P ≤ 0.05) for fall-planted seeds in all years; survival of winter/spring seedlings was 80–100% with no discernable pattern between planting weeks. Our results indicate that winter/spring seeding of perennial bunchgrasses is biologically feasible in years with adequate precipitation but fall seeding was more consistently successful. Additional research is needed to determine environmental factors driving within-year variation in demographics for winter/spring planted seeds.