PubAg

Main content area

The value of simplified models for spin up of complex models with an application to subsurface hydrology

Author:
Erdal, Daniel, Baroni, Gabriele, Sánchez-León, Emilio, Cirpka, Olaf A.
Source:
Computers & geosciences 2019 v.126 pp. 62-72
ISSN:
0098-3004
Subject:
computers, groundwater, groundwater recharge, hydrologic models, mathematical models, seasonal variation, spinning, vadose zone, water table
Abstract:
Spinning up large-scale coupled surface-subsurface numerical models can be a time and resource consuming task. If an uninformed initial condition is chosen, the spin-up can easily require 20 years of repeated simulations on high-performance computing machines. In this paper we compare the classical approach of starting from a fixed shallow depth to groundwater (here 3 m) with three more informed approaches for the definition of initial conditions in the spin up. In the first of these three approaches, we start from a known-steady state groundwater table, calculated with a 2-D groundwater model and the yearly net recharge, and combine it with an unsaturated zone that assumes hydrostatic conditions. In the second approach, we start from the same groundwater table combined with vertical profiles in the unsaturated zone with uniform vertical flow identical to the groundwater recharge. In the third approach we calculate a dynamic steady state from a simplified subsurface model combining a transient 2-D groundwater model with a limited number of 1-D transient unsaturated zone columns on top. Results for spinning-up a 3-D Parflow-CLM model using the different initial conditions show that large gains can be made by considering states in groundwater and the vadose zone that are consistent, i.e. where groundwater recharge and the vertical flux in the vadose zone agree. By this, the spin-up time was reduced from about 10 years to about 3 years of simulated time. In the light of seasonal fluctuations of net recharge, using the transient approach showed more stable results.
Agid:
6299104