Main content area

Streamwater ages in nested, seasonally cold Canadian watersheds

Bansah, Samuel, Ali, Genevieve
Hydrological processes 2019 v.33 no.4 pp. 495-511
cold, deuterium, drainage, evaporation, fractionation, models, oxygen, runoff, stable isotopes, stream flow, time series analysis, water storage, watersheds
The mean transit time (MTT) is an important descriptor of water storage and release dynamics in watersheds. Although MTT studies are numerous for many regions around the world, they are rare for prairie watersheds where seasonally cold or dry conditions require adequate methodological choices towards MTT estimation, especially regarding the handling of sparse data records and tracer selection. To examine the impact of such choices, we used timeseries of δ¹⁸O and δ²H from two contrasted years (2014 and 2015) and relied on two metrics and two modelling methods to infer MTTs in prairie watersheds. Our focus was on nested outlets with different drainage areas, geologies, and known run‐off generation mechanisms. The damping ratio and young water fraction (i.e., the fraction of streamflow with transit times lesser than 3 months) metrics, as well as the sine‐wave modelling and time‐based convolution modelling methods, were applied to year‐specific data. Results show that young water fractions and modelled MTT values were, respectively, larger and smaller in 2014, which was a wet year, compared with that in 2015. In 2014, most outlets had young water fractions larger than 0.5 and MTT values lesser than 6 months. The damping ratio, young water fraction, and sine‐wave modelling methods led to convergent conclusions about watershed water storage and release dynamics for some of the monitored sites. Contrasting results were, however, obtained when the same method was applied using δ²H instead of δ¹⁸O, due to differing evaporation fractionation, or when the time‐based convolution modelling method was used. Some methods also failed to provide any robust results during the dry year (i.e., 2015), highlighting the difficulty in inferring MTTs when data are sparse due to intermittent streamflow. This study therefore allowed the formulation of empirical recommendations for MTT estimation in prairie environments as a function of data availability and antecedent wetness conditions.