PubAg

Main content area

Rate–Driving Force Relationships in the Multisite Proton-Coupled Electron Transfer Activation of Ketones

Author:
Qiu, Guanqi, Knowles, Robert R.
Source:
Journal of the American Chemical Society 2019 v.141 no.6 pp. 2721-2730
ISSN:
1520-5126
Subject:
Bronsted acids, electron transfer, hydrogen bonding, ketones, luminescence
Abstract:
Here we present a detailed kinetic study of the multisite proton-coupled electron transfer (MS-PCET) activations of aryl ketones using a variety of Brønsted acids and excited-state Ir(III)-based electron donors. A simple method is described for simultaneously extracting both the hydrogen-bonding equilibrium constants and the rate constants for the PCET event from deconvolution of the luminescence quenching data. These experiments confirm that these activations occur in a concerted fashion, wherein the proton and electron are transferred to the ketone substrate in a single elementary step. The rates constants for the PCET events were linearly correlated with their driving forces over a range of nearly 19 kcal/mol. However, the slope of the rate–driving force relationship deviated significantly from expectations based on Marcus theory. A rationalization for this observation is proposed based on the principle of non-perfect synchronization, wherein factors that serve to stabilize the product are only partially realized at the transition state. A discussion of the relevance of these findings to the applications of MS-PCET in organic synthesis is also presented.
Agid:
6308339