U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.


Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.


Main content area

Development of a multiplex PCR assay based on the pilA gene sequences to detect different types of Acidovorax citrulli

Y.W. Yang, M. Zhao, L.Q. Zhang, P. Qiao, X. Bai, X.X. Zhang, R.R. Walcott, W. Guan, T.C. Zhao
Journal of microbiological methods 2019 v.158 pp. 93-98
Acidovorax avenae subsp. citrulli, Cucurbitaceae, antibiotics, copper, disease outbreaks, fimbriae, fruits, host preferences, leaves, nucleotide sequences, pathogens, polymerase chain reaction, seeds, watermelons, China
Bacterial fruit blotch (BFB) of cucurbits, caused by Acidovorax citrulli, is a major threat to commercial watermelon and melon production worldwide. At present, there are at least two genetically distinct sub-populations (group I and II) of A. citrulli that differ in host preference among cucurbit species and copper sensitivity. In this study, we analyzed the pilA gene sequences of 103 A. citrulli strains from China and other countries. Based on these data, we classified all tested A. citrulli strains into three types. The pilA-based type 1 strains in this study coincided with the previously established group I strains; while the type 2 strains coincided with group II strains. Ten strains that did not cluster with group I or II strains were classified into a new type, designated type 3. Based on differences in pilA sequences, we designed a multiplex PCR assay to distinguish the three A. citrulli pilus types. This multiplex PCR assay has proven to be viable for strain typing of 139 A. citrulli strains and for the detection of this pathogen in artificially inoculated seeds and leaves and naturally infected leaves and fruits. This assay proved to be rapid, accurate, reliable and applicable for early distinction of A. citrulli types associated with BFB epidemics. It may also inform the judicious and environmentally sound use of bactericides, especially copper-based compounds.