PubAg

Main content area

De novo sequencing of the Lavandula angustifolia genome reveals highly duplicated and optimized features for essential oil production

Author:
Malli, Radesh P. N., Adal, Ayelign M., Sarker, Lukman S., Liang, Ping, Mahmoud, Soheil S.
Source:
Planta 2019 v.249 no.1 pp. 251-256
ISSN:
0032-0935
Subject:
Lavandula angustifolia, alkyl (aryl) transferases, biochemical pathways, essential oils, genes, genetic markers, genome assembly, good hygiene practices, metabolism, monoterpenoids, oxidoreductases, pharmaceutical industry, plant breeding
Abstract:
MAIN CONCLUSION: The first draft genome for a member of the genus Lavandula is described. This 870 Mbp genome assembly is composed of over 688 Mbp of non-gap sequences comprising 62,141 protein-coding genes. Lavenders (Lavandula: Lamiaceae) are economically important plants widely grown around the world for their essential oils (EOs), which contribute to the cosmetic, personal hygiene, and pharmaceutical industries. To better understand the genetic mechanisms involved in EO production, identify genes involved in important biological processes, and find genetic markers for plant breeding, we generated the first de novo draft genome assembly for L. angustifolia (Maillette). This high-quality draft reveals a moderately repeated (> 48% repeated elements) 870 Mbp genome, composed of over 688 Mbp of non-gap sequences in 84,291 scaffolds with an N50 value of 96,735 bp. The genome contains 62,141 protein-coding genes and 2003 RNA-coding genes, with a large proportion of genes showing duplications, possibly reflecting past genome polyploidization. The draft genome contains full-length coding sequences for all genes involved in both cytosolic and plastidial pathways of isoprenoid metabolism, and all terpene synthase genes previously described from lavenders. Of particular interest is the observation that the genome contains a high copy number (14 and 7, respectively) of DXS (1-deoxyxylulose-5-phosphate synthase) and HDR (4-hydroxy-3-methylbut-2-enyl diphosphate reductase) genes, encoding the two known regulatory steps in the plastidial isoprenoid biosynthetic pathway. The latter generates precursors for the production of monoterpenes, the most abundant essential oil constituents in lavender. Furthermore, the draft genome contains a variety of monoterpene synthase genes, underlining the production of several monoterpene essential oil constituents in lavender. Taken together, these findings indicate that the genome of L. angustifolia is highly duplicated and optimized for essential oil production.
Agid:
6310044