Main content area

Treading water: respirometer choice may hamper comparative studies of energetics in fishes

Lear, Karissa O., Whitney, Nicholas M., Brewster, Lauran R., Gleiss, Adrian C.
Marine & freshwater research 2019 v.70 no.3 pp. 437-448
Negaprion brevirostris, environmental factors, fish, hydraulic flumes, juveniles, life history, metabolism, swimming, tail
Measuring the metabolic rate of animals is an essential part of understanding their ecology, behaviour and life history. Respirometry is the standard method of measuring metabolism in fish, but different respirometry methods and systems can result in disparate measurements of metabolic rate, a factor often difficult to quantify. Here we directly compare the results of two of the most common respirometry systems used in elasmobranch studies, a Steffensen-style flume respirometer and an annular static respirometer. Respirometry trials with juvenile lemon sharks Negaprion brevirostris were run in both systems under the same environmental conditions and using the same individuals. Relationships between metabolic rate, swimming speed, overall dynamic body acceleration (ODBA) and tail beat frequency (TBF) were compared between the two systems. The static respirometer elicited higher TBF and ODBA for a given swimming speed compared with the flume respirometer, although it produced relationships between kinematic parameters that were more similar to those observed in free-swimming animals. Metabolic rates and swimming speeds were higher for the flume respirometer. Therefore, although flume respirometers are necessary for many types of controlled laboratory studies, static respirometers may elicit lower stress and produce results that are more applicable to fish in wild systems.