PubAg

Main content area

High Catalytic Activity of Fe3−xCuxO4/Graphene Oxide (0 ≤ x ≤ 0.1) Nanocomposites as Heterogeneous Fenton Catalysts for p-Nitrophenol Degradation

Author:
Liu, Mingwang, Jia, Zhenzhen, Li, Peng, Liu, Yunfang, Zhao, Mengjia, Yang, Yizi, Huang, Qigu, Yu, Changyuan
Source:
Water, air, and soil pollution 2019 v.230 no.3 pp. 64
ISSN:
0049-6979
Subject:
catalysts, catalytic activity, chemical oxygen demand, copper, copper nanoparticles, coprecipitation, hydrogen peroxide, iron oxides, nanocomposites, p-nitrophenol, pH, temperature, wastewater treatment
Abstract:
In order to improve the catalytic properties of Fe₃O₄ nanoparticles in wastewater treatment, the Cu-doped Fe₃O₄/graphene oxide (Fe₃₋ₓCuₓO₄/GO) nanocomposites were prepared by a modified co-precipitation method and used as heterogeneous catalyst for p-Nitrophenol (p-NP) degradation. The effect of the GO and Cu contents in the nanocomposites was investigated. Compared with the unsupported Fe₃O₄ nanoparticles, the Fe₃O₄/GO nanocomposites have obviously improved catalytic performance, especially for the nanocomposite with 6.25 wt.% of the GO content. Furthermore, the catalytic efficiency is greatly improved by doping Cu in the nanocomposite. The Fe₃₋ₓCuₓO₄/GO nanocomposite achieves the best catalytic property in our catalyst system when the x value is about 0.075. Under the optimal reaction condition (0.8 g L⁻¹ of catalyst dosage, 15 mmol L⁻¹ of initial H₂O₂ concentration, 3.0 of pH value, and 30 °C of temperature), the p-NP conversion and chemical oxygen demand removal efficiencies in 120 min for the Fe₂.₉₂₅Cu₀.₀₇₅O₄/GO nanocomposite are about 98.4% and 74.7%, respectively. And the p-NP conversion efficiency is still as high as 96.2% after four recycles under the optimum condition. The results clearly show that the Fe₂.₉₂₅Cu₀.₀₇₅O₄/GO nanocomposite has outstanding catalytic properties for the p-NP degradation.
Agid:
6313684