PubAg

Main content area

Size matters in regulating the biodiversity of tropical forest soils

Author:
Dumbrell, Alex J.
Source:
Molecular ecology 2019 v.28 no.3 pp. 525-527
ISSN:
0962-1083
Subject:
biodiversity, body size, environmental factors, fauna, forest communities, forest soils, soil microorganisms, stochastic processes, tropical forests
Abstract:
Tropical forests have long fascinated ecologists, inspiring a plethora of research into the mechanisms regulating their immense biodiversity, which originally captured the interests of early natural historians and explorers, and that still persists to this day. A new focus of this research emerged in the early 2000s highlighting the potential role of neutral (stochastic) processes in regulating the composition and diversity of tropical forest communities, and thus the maintenance of a large portion of global biodiversity (Hubbell,). This strictly contrasted the long‐held belief that communities assembled via the sorting of species (and their abundances) via a deterministic response to local abiotic and biotic environmental conditions, reflecting the niche of each species (Leibold & McPeek,). Yet, it is unlikely that the assembly of any community is solely governed by either stochastic or deterministic processes, but instead a combination of both. However, whether deterministic processes via niche‐based environmental sorting of species, or stochastic processes reflecting pattens of dispersal limitation, neutral effects and ecological drift dominate is often unclear. This prompts questions as to whether the relative influence of one process over another is dependent on the scale (spatial or temporal) or context of the study, or specific traits of the taxa under investigation (e.g., body size). In a From the Cover paper in this issue of Molecular Ecology, Zinger et al. () tackle all these issues and show, among other things, that for soil microbes and mesofauna from tropical forests, the relative contribution of stochastic and deterministic processes in assembling their communities is strongly dependent on the body size or the studied taxa.
Agid:
6314343